Order monotonic solutions for generalized characteristic functions

نویسندگان

  • René van den Brink
  • Enrique González-Arangüena
  • Conrado Manuel
  • Mónica del Pozo
چکیده

Generalized characteristic functions extend characteristic functions of ‘classical’ TU-games by assigning a real number to every ordered coalition being a permutation of any subset of the player set. Such generalized characteristic functions can be applied when the earnings or costs of cooperation among a set of players depends on the order in which the players enter a coalition. In the literature, the two main solutions for generalized characteristic functions are the one of Nowak and Radzik (1994), shortly called NR-value, and the one introduced by Sánchez and Bergantiños (1997), shortly called SB-value. In this paper, we introduce the axiom of order monotonicity with respect to the order of the players in a unanimity coalition, requiring that players who enter earlier should get not more in the corresponding (ordered) unanimity game than players who enter later. We propose several classes of order monotonic solutions for generalized characteristic functions that contain the NR-value and SB-value as special (extreme) cases. We also provide axiomatizations of these classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First order linear fuzzy dynamic equations on time scales

In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.

متن کامل

Autoconvolution equations and generalized Mittag-Leffler ‎functions

This article is devoted to study of the autoconvolution equations and generalized Mittag-Leffler functions. These types of equations are given in terms of the Laplace transform convolution of a function with itself. We state new classes of the autoconvolution equations of the first kind and show that the generalized Mittag-Leffler functions are solutions of these types of equations. In view of ...

متن کامل

On bounds for solutions of monotonic first order difference-differential systems

Many special functions are solutions of first order linear systems y′ n(x) = an(x)yn(x) + dn(x)yn−1(x), y ′ n−1(x), = bn(x)yn−1(x) + en(x)yn(x) . We obtain bounds for the ratios yn(x)/yn-1(x) and the logarithmic derivatives of yn(x) for solutions of monotonic systems satisfying certain initial conditions. For the case dn(x)en(x) > 0, sequences of upper and lower bounds can be obtained by iterat...

متن کامل

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

On the generalized mass transfer with a chemical reaction: Fractional derivative model

In this article using the inverse Laplace transform, we show analytical solutions for the generalized mass transfers with (and without) a chemical reaction. These transfers have been expressed as the Couette flow with the fractional derivative of the Caputo sense. Also, using the Hankel contour for the Bromwich's integral, the solutions are given in terms of the generalized Airy functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 238  شماره 

صفحات  -

تاریخ انتشار 2014